Integrating Molecular Genetics with Prevention

Joan Kaufman, Ph.D.

Yale University School of Medicine
Department of Psychiatry
Child and Adolescent Research and Education (CARE) Program
Adoption and Safe Families Act
P.L. 105-89

Permanency can be attained via:

1 – Reunification with birth families.
2 - Adoption.
3 - Guardianship granted to kin.
Data Promoting the Passing of P.L. 105-89

- Average length of stay in foster care estimated at 2 years.
- One-third of children in care spend the majority of their lives in “foster-care drift”.
- Time to permanency/adoption drawn out:
 - 3-4 years from placement to filing for TPR.
 - 1-2 years from filing to TPR ruling.
 - 2-5 years to finalize appeals process.
Promoting Permanence for Maltreated Children: The Connecticut Model

SAFE Homes Programs

- Short-term group homes
- Community based
- Evaluation
- Treatment planning
SAFE Homes: Retrospective Study

Subjects: 342 SAFE Home Cases
342 Traditional Foster Care Cases

First-time placements, 3-12 years of age at initial placement, propensity score matched cases from a larger cohort of 909 children.

Design: Longitudinal Record Review
Duration: 12-Month Follow-up

Child Abuse and Neglect, 2005
SAFE Homes: Retrospective Study

Primary Outcomes:

Number of out-of-home placements
Duration in out-of-home care
Location at one-year follow-up
Placement with siblings/town of origin
Cost of out-of-home placements
Proportion of Children with More Than 3 Placements in 12 Months
Cost for Out-of-Home Care

While the SH and FC children spent a comparable time in placement, the total cost for the out-of-home care of the children who were originally placed in the SAFE Homes was twice the total out-of-home care expenditures of the children who went to traditional foster care.
Conclusions: Retrospective Study

- Children are experiencing fewer placements in out-of-home care.
- Improvement in outcome observed in SAFE Homes and Foster Care cases.
- Changes appear due to a paradigmatic shift in practice.
Unanswered Questions:

1. **SAFE Homes: Is it Worth the Cost?**
2. **Are children and families doing better since the initiation of SAFE Homes?**
Prospective Longitudinal Two-Year Follow-Up Study of Children Participating in SAFE Homes

- Child well being, maltreatment, and placement data
- Study within a study -- examination of genetic and environmental risk and protective factors associated with a wide range of child outcomes.
- Assessments in Day Camp set up specifically for research purposes.

Department of Children and Families
together with
Yale University’s C.A.R.E. Program

requests a moment of your time…
SAFE Homes Summary:

- The majority of children who enter out-of-home care have extensive histories with DCF.

- Almost 20% of the children experienced a new substantiated report of maltreatment during the one-year follow-up --- over 40% had one by the two-year follow-up.

- Approximately one in four children who were returned home re-entered care within 12-months.

- Untreated substance abuse and domestic violence problems were associated with high rates of re-abuse and prolonged time in care.

- By two-year follow-up, approximately half of the children were living in non-permanent placements.
Genetic and Environmental Predictors of Aggressive Behaviors in Maltreated Children One-Year After Entry into Out-of-Home Care

Preliminary Analyses
Serotonin Transporter Genotype, Childhood Adversity, and Impulsive Aggression

It is believed that the propensity for impulsive aggression, which is relatively unplanned and spontaneous but often culminates in physical violence, is associated with a low threshold for activating negative affect and with a failure to respond appropriately to the anticipated harmful consequences of behaving aggressively.

Reif et al. 2007
Placement History
Antisocial Behavior and Violence

Widom et al., 1991
Predictors of Aggression at One-Year Follow-Up

Baseline Aggression Does **Not** Predict Number of Placements, but number of placements does predict aggression scores at follow-up.
Predictors of Aggression at One-Year Follow-Up

Significant Predictors: 1) Baseline Aggression Ratings; 2) Serotonin Transporter Genotype; 3) Number of placements; 4) Placement with siblings
Opportunities for Prevention

- Child Abuse Prevention
- Substance Abuse/Domestic Violence Tx
- Placement With Siblings
- Prevention of Placement Disruption

Maltreatment → Placement → Sociopathy
Multiple small scale studies find association between 5-HTTLPR and treatment response.

Recent failure to replicate finding in large clinical trial (e.g., Kraft et al., 2007).

In other disciplines, integrating genotype into treatment decisions has led to much improved outcomes.

Stein et al., 2006
Translational Research Approach

Central Tenet: Preclinical (e.g., animal) studies – especially studies on the effects of early stress – can help to guide hypotheses about the causes, prevention, and treatment of depression, PTSD and other stress related psychiatric illnesses.
Early Stress associated with long-term changes in stress reactivity and brain development

Maternal separation in infancy is associated in adulthood with:

- Increased basal and stress induced ACTH and corticosterone
- Increased CRH and NE drive in the hypothalamus, amygdala, and locus coeruleus
- Reduced tone of the GABA/BZ inhibitory system
- Multiple changes in the serotonergic system
- Hippocampal atrophy

Ladd, Owens, and Nemeroff, 1996
Many of the Neurobiological Changes Associated with Early Stress are Reported in Adults with MDD and PTSD

- Multiple HPA axis abnormalities
- Increased cerebrospinal fluid CRH and NE
- Decreased GABA/BZ receptor number and/or binding
- Multiple indicators of altered 5-HT function
- Hippocampal atrophy

Bremner et al., 1997
Much of the pre-clinical studies on the effects of stress have examined the long-term impact of early stress on *adult* animals, with the application of research findings from these preclinical studies somewhat limited in guiding clinical research on the effects of stress in children and adolescents.
Corpus Callosum in Prepubescent Primates subject to Early Stress

- **Primates separated from their mothers during the first 3 weeks of life.**
- **Structural MRIs completed while prepubescents.**
- **Monkeys separated during infancy had reduced medial and caudal corpus callosum area.**
- **No evidence of hippocampal atrophy.**
Corpus Callosum in Maltreated Children with PTSD

- DeBellis Study: 44 PTSD and 71 NC
- Children with PTSD had decreased area of the medial and caudal portions of the corpus callosum.
- No evidence of hippocampal atrophy.
- Replicated in three independent samples.
Formative Translational Center Application

Key Personnel

- **Joan Kaufman, Ph.D.** Director
- **Ron Duman, Ph.D.** Project PI
- **Jeremy Coplan, M.D.** Project PI
- **Arie Kaffman, M.D., Ph.D.** Investigator
- **Sam Newton, Ph.D.** Investigator
- **Joel Gelernter, M.D.** Investigator
- **Andrew Dwork, Ph.D.** Investigator
- **Tarique Perera, M.D.** Investigator

Other Key Contributors:

- **John Krystal, M.D.** Internal Advisory Board
- **Jim Leckman, M.D.** Internal Advisory Board
- **Steve Southwick, M.D.** Internal Advisory Board
- **Pasco Rakic, M.D.** Internal Advisory Board
- **Michael Meaney, Ph.D.** Consultant
- **Hymie Anisman, Ph.D.** Consultant
- **Len Rosenblum, Ph.D.** Consultant
- **Harold Sacheim, Ph.D.** Consultant

Department of Health and Human Services

Public Health Services

Grant Application

Do not exceed character length restrictions indicated.

<table>
<thead>
<tr>
<th>Type</th>
<th>Activity</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Review Group</td>
<td>Formerly</td>
<td>Date Received</td>
</tr>
<tr>
<td>Council/Board (Month, Year)</td>
<td>Date Received</td>
<td></td>
</tr>
</tbody>
</table>

1. **TITLE OF PROJECT** *(Do not exceed 81 Characters, including spaces and punctuation.)*

 IDSC for the Study of Early Stress, Psycho

2. **RESPONSE TO SPECIFIC REQUEST FOR**

 Number: PAR-06-062

 Title: Interdisciplinary Develop

 APPLICATIONS OR PROGRAM ANNOUNCEMENT

 mental Science Ctrs. For Mental Health
Translational Approaches to the Study of Early Stress, Psychopathology, and Resilience in Children

- Rodent and primate models will be utilized to study the effects of genotype and early stress on brain development in prepubescent animals and across the lifecycle.
- Key Brain Regions: Corpus Callosum; Hippocampus
- Histological Studies of neural stem cell proliferation and differentiation of: 1) Neurons; 2) Oligodendrocytes
- Microarray Analyses: 1) Neurotrophic Factors and Signaling Factors; 2) Myelin-Related Genes

s/l vs. 1/1
5-HTT (+/+ vs. 5-HTT (+/-)
Primate Data: Preliminary G x E Findings Predicting Corpus Callosum Area

G*E Interaction, Ls Means
Current effect: F(1, 18)=5.0941, p=.03667
Effective hypothesis decomposition
Vertical bars denote 0.95 confidence intervals

Corpus Callosum Total Area

ss or st II
SHTTLPR

NON-VFD VFD
The dichotic listening paradigm we have selected requires interhemispheric transfer through posterior corpus callosum, and involves affective processing circuits which have been found to be disturbed in children and adults with depression and anxiety disorders, with key anatomical structures involved in these circuits sensitive to variation in 5-HTTLPR, environmental stress, and G x E interactions. This task also avoids racial biasing effects inherent in face processing tasks.
Conclusion

Better understanding of the neurobiological and psychosocial correlates associated with risk and resiliency in children will help to inform the development of more effective multi-modal interventions for children with histories of early trauma. It is our firm belief that the focus of clinical and research efforts for maltreated children must span from neurobiology to social policy.
Acknowledgements

Child and Adolescent Research and Education (CARE) Program

Kim Ballenger-Smith
Heather Douglas-Palumberi, M.A.
Deborah Lipschitz, M.D.
Makeba Massey, M.A.

National Center for Posttraumatic Stress Disorder

John Krystal, M.D.
Steve Southwick, M.D.

Former Students

Allen Desena, M.P.H.
Amanda Schweder, Ph.D.
Shadi Houshyar, M.S.
Daryn David, A.B.
Damion Grasso, M.A.

Preclinical Collaborators

Jeremy Coplan, M.D.
Ron Duman, Ph.D.
Andrew Dwork, Ph.D.
Arie Kaffman, M.D., Ph.D.
Sam (Newton) Sathyanesan, Ph.D.

Developmental Neuroimaging Program

Andrea Jackowski, Ph.D.
Marcel Jackowski, Ph.D.
Robert Schultz, Ph.D.
Larry Staib, Ph.D.
Lawrence Winn, B.A.

Genetics Program

Joel Gelernter, M.D.
Bao-Zhu Yang, Ph.D.
Gregg Kay, B.S.

State of Connecticut, Department of Children and Families

Darlene Dunbar, M.S.W.
Dixie Dappollonio, M.S.W.
Michael Schultz, Ph.D.
Danbury, New Haven, Torrington, and Waterbury Regional Offices